
Continuity
A function is continuous at a point if the three following conditions are met: 1) f (a) is defined. 2) f (x) exists. 3) f (x) = f (a). A conceptual way to describe continuity is this: A function is continuous if its graph can be traced with a pen without lifting the pen from the page.

Infinite Discontinuity
A category of discontinuity in which a vertical asymptote exists at x = a and f (a) is undefined.

Jump Discontinuity
A category of discontinuity in which f (x)≠f (x), but both of these limits exist and are finite.

Limit
The value A to which a function f (x) gets arbitrarily close as the value of the independent variable x gets arbitrarily close to a given value a. Such a limit is symbolized this way: lim_{xâÜ’a}f (x) = A.

OneSided Limit
A limit based entirely on the values of a function taken at an xvalue slightly greater than or less than a given value. Whereas a twosided limit f (x) takes into account the values of x near a which are both greater than and less than a, a onesided limit from the left f (x) or from the right f (x) takes into account only values of x less than a, or greater than a, respectively.

Point Discontinuity
A category of discontinuity in which a function has a welldefined twosided limit at x = a, but either f (x) is not defined at a or its value at a is not equal to this limit.